时空弯曲的神秘漩涡

2019-12-05 11:29:24

  北京时间11月16日凌晨1时30分,美国国家航空航天局(NASA)在其华盛顿总部电视演播室举行了近40分钟的新闻发布会,宣布该局发射的“钱德拉”X射线太空望远镜发现了一个黑洞。这个质量大约是太阳的5倍,由一颗质量大约20倍于太阳的恒星发生超新星爆炸形成的黑洞,其特别之处在于:它是人类历史上发现的最年轻的黑洞,仅仅31岁。

  这令科学家兴奋不已——因为这是人类历史上首次看到了黑洞的诞生,观测到了该黑洞从它诞生至今的整个成长过程,这个发现有望为科学家研究黑洞如何从“婴儿”状态开始演化提供独一无二的机会。

  围绕这一消息,人们不免会提出一系列的问题:什么是黑洞?他们有什么奇异之处?他们是怎么诞生的?我们是怎么“看到”他们的?这次观测为何这么重要?还有:为何天文学家对黑洞这么感兴趣?本文将试图对这些问题一一作出解答。

  什么是黑洞

  黑洞,就像是宇宙中的一个“怪物”,包括光子在内的任何物体都无法逃脱它的引力“魔掌”。

  黑洞,单单从这个名字看,就让人感觉神秘。事实上也的确如此,即使在天文学家的眼中,黑洞也是宇宙中最不寻常的天体。要介绍黑洞,先要从“逃逸速度”说起。

  从星体表面发射火箭到太空,要想逃脱该星体引力的束缚,就要求火箭的速度必须大于一个临界速度。只要比这个速度快,物体就能不再掉落到星体上,或绕着它旋转,而可以去更远的外太空自由翱翔,故而这个速度称为“逃逸速度”。地球的逃逸速度大约是每秒11公里,太阳表面的引力比地球强很多,因此太阳的逃逸速度大约是每秒600公里。那么,如果有这么一种物体,它的表面引力非常强,以至于逃逸速度等于光速——宇宙中最快的速度,此时任何物体,甚至是光子本身,都无法逃脱该物体的“引力魔掌”——这个物体就是黑洞。

  “黑洞”这个名词,是美国物理学家惠勒于1967年发明的。而“黑洞”的想法,早在18世纪就由博学家米切尔以及著名数学家和天文学家拉普拉斯提出来了。但是这些想法严格地说并不严谨,因为它们都是基于牛顿力学,而我们现在知道,当引力非常强时,牛顿力学不再适用了,应当用爱因斯坦的广义相对论取代。所以,直到上世纪初,当爱因斯坦发现了广义相对论之后,黑洞的存在才得到了严格证明。

  广义相对论预言的黑洞由两个基本结构组成:黑洞中心是一个“奇点”,所有的物质都集中在这个点上,密度因而是无限大。当然,现代科学认为,广义相对论本身还不是终极理论,还需要发展,具体来说是要与量子力学结合。这样的话,奇点将不再是个没有体积的点了。奇点之外,黑洞存在一个“表面”,叫“视界”,这也是黑洞的“半径”。视界可以看作是黑洞的“势力范围”。一旦进入视界,所有的物体,包括光,都无法逃脱。不同质量的黑洞,其视界的大小是不一样的。若黑洞的质量相当于地球质量,则视界只有2.5厘米。也就是说,地球要变成一个黑洞的话,必须缩小为乒乓球大小才可以。若太阳变成一个黑洞,则就要从目前的70万公里半径的巨大火球变成半径只有3公里的球体。

  宇宙天体的兴衰

  大质量恒星的超新星爆发与伽马射线暴造就了黑洞

  宇宙中的天体也与地球上的生物一样,会经历诞生、成长、衰老和死亡。广义相对论预言,黑洞就是大质量恒星死亡以后的“残骸”。具体来说,黑洞是质量大于20倍太阳质量的恒星死亡以后形成的。

  万有引力无处不在,一个恒星各个部分之间当然也是存在万有引力的。但是,恒星之所以能够维持一个较大的球形而没有被万有引力吸引得“塌缩”下去,是由于存在其他的力与引力抗衡,这个力就是恒星内部热核反应加热气体产生的膨胀压力。热核反应的基本过程是将较轻的氢元素合并成较重的氦元素,在这一过程中会释放出大量的热量。等到核燃料逐渐耗尽的时候,恒星也就开始衰老,濒临死亡了。这时,气体就会很快冷却下来,与引力相抗衡的气体压力因而就会大大减小。于是,恒星在强大的万有引力作用下会迅速向中心塌缩,体积迅速缩小。塌缩过程中会形成反弹激波,恒星外层的气体会在反弹激波的作用下爆炸,将一部分气体炸到宇宙空间中。

  下一步的命运取决于原初恒星的质量。若原先的恒星质量较小,小于10倍太阳质量,则恒星缩小到一定程度后,一种叫做“电子简并压”的力能够与引力抗衡,星体于是停止塌缩。这时形成的星体叫“白矮星”。这种星体表面仍然存在少量可燃烧物质,但是温度非常高,所以颜色很“白”。再加上这种形体体积很小,即“很矮”,所以叫做白矮星。

  若爆发前身恒星的质量比较大,大于10倍太阳质量但小于20倍太阳质量,引力就会更强一些,这时电子简并压力也无法与引力抗衡,恒星会进一步塌缩。这时另一种力——“中子简并压力”出现并发挥作用,能够与引力达到平衡。星体于是停止塌缩。这时形成的星体叫做“中子星”。中子星中大部分物质都是由中子构成的,中子和中子之间空隙很小,故中子星密度非常大:它的半径只有10公里,但是质量却达到太阳质量的两倍!

  若爆发恒星的质量高于20倍太阳质量,引力会非常强,即使是中子简并压力也无法与之平衡,于是恒星只能无限制的塌缩下去,变成一个黑洞!这次发现的黑洞,其前身星正是一个大约20倍太阳质量的恒星!

  详细研究表明,对于质量大于20倍太阳质量的恒星,其演化的最终结局虽然都是黑洞,但却有两种截然不同的具体表现:一是超新星爆发,二是伽马射线暴。恒星具体命运如何,取决于恒星的初始物理状态,比如旋转的快慢。旋转慢的大质量恒星死亡后会发生超新星爆发,而旋转快的则会形成一个强大的“喷流”,形成伽马射线暴。超新星爆发与伽马射线暴两种爆发的总能量相差无几,区别在于前者较“温和”,即这些能量是在较长的时间里爆发,而后者非常剧烈,在极短时间里——从不到1秒到几百秒——就发出巨大的能量。伽马射线暴是宇宙自诞生以来我们目前所知道的最剧烈的爆发现象,是上世纪60年代才偶然发现的比较新的天文现象,关于它的起因仍是一个谜,因此是目前天体物理研究的一个热点。而这次观测到的年轻黑洞,形成于31年前观测到的一次超新星爆发。

  首次看到黑洞诞生

  这次美国宇航局宣布的发现意义之所以重大,原因就在于我们人类历史上首次看到了黑洞的诞生以及“婴儿期”演化的整个过程。

  此前,曾有媒体宣称NASA此次宣布的发现“足以震惊全人类”,引发网友广泛关注,钱德拉望远镜的官方网站甚至因为访问人数过多而无法访问。虽然这则消息不是有些人想象中的“外星人”、“飞碟”、“世界末日”之类,但从科学研究的意义上,这的确是个意义重大、激动人心的消息。

  可以想象,上面描述的恒星从衰老到爆炸死亡、形成黑洞的整个过程是极端复杂的,涉及到的物理知识几乎涵盖了经典以及现代物理和天文学的所有主要的分支和领域,包括核物理、统计物理、广义相对论、量子力学、流体力学、辐射物理以及恒星结构与演化等等。毫不夸张地说,黑洞的形成理论是物理和天文学家们几个世纪来智慧的结晶、集大成之作。

  显然,从观测上验证上述黑洞形成的复杂理论,最理想的情况就是看到恒星从爆发到形成黑洞的整个过程。然而,迄今为止,尽管天文学家们已经在银河星内发现了20多个黑洞,却无法判断这些黑洞的年龄——只是可以确定,它们都不是刚刚诞生的。

  这次美国宇航局宣布的发现意义之所以重大,原因就在于我们人类历史上首次看到了黑洞诞生以及早期演化的整个过程,而且由于这个黑洞距离我们非常近,只有5000万光年,更为资料积累提供了便利。从1979年恒星开始爆发,一直到今天的31年时间里,我们都有对这个黑洞的详尽的观测资料。这对于验证我们的恒星演化和黑洞形成理论,并进而推断星系、宇宙中黑洞的分布以及有关的天体物理研究无疑将有重要帮助。

  同时,天文学家之所以对黑洞那么有兴趣,还有很多原因。目前,国际上的天体物理研究热点,有“一黑、两暗、三起源”的说法,“一黑”指的就是黑洞(两暗是指暗物质、暗能量,三起源是指宇宙起源、天体起源、生命起源)。黑洞研究之所以重要,首先因为黑洞周围引力极强,由此引起的吸积盘中的气体的其他物理性质也都非常极端,如超高温、高压、超强磁场等等,这些极端的条件是地球上的实验室无法达到的,而这些恰恰对于我们验证物理学的基础性理论如广义相对论等可以说起着举足轻重的作用。其次,宇宙中大部分有趣的剧烈爆发、高能量现象都是跟黑洞联系在一起的,比如伽马射线爆发、活动星系核(指的是星系中心的质量超过太阳质量百万倍以上的超大质量黑洞)等,故研究黑洞能直接帮助我们揭开这些现象的神秘面纱。第三,最近的研究发现,黑洞与其他的一些人们感兴趣的问题紧密相关,比如星系是如何形成和演化的。只有研究清楚了黑洞本身,才可能最终解决这些难题。

  相关链接 钱德拉太空望远镜

  钱德拉太空望远镜原称高级X射线天体物理学设施(AXAF),是美国航宇局NASA“大天文台”系列空间天文观测卫星中的第三颗。该系列共由4颗卫星组成,另三颗是康普顿(Compton)伽马射线观测台、哈勃太空望远镜(HST)和斯皮策太空望远镜。

  钱德拉望远镜专为观察来自宇宙最热的区域的X射线而设计,以帮助天文学家搜寻宇宙中的黑洞和暗物质,从而更深入地了解宇宙的起源和演化过程。它是迄今为止人类建造的最先进、最复杂的太空望远镜,被誉为“X射线领域内的哈勃”。

  1999年7月23日,钱德拉望远镜由美国哥伦比亚号航天飞机送入太空。它距地球最远时的距离约为地球到月球的距离的三分之一。选用这种大椭圆轨道是为了有尽可能多的时间让望远镜保持在地球的辐射带之外,并避开在离地球很近处运行带来的一些观测上的限制。