高中生物基础知识考前梳理(5)

2019-11-13 07:05:38

生物的遗传


一、遗传的细胞基础——减数分裂和受精作用
1.细胞的减数分裂
(1)减数分裂是指有性生殖的生物产生有性生殖细胞的过程,细胞连续分裂2次,而染色体只复制1次,结果子细胞中的染色体数量减半的细胞分裂过程。减数分裂与有丝分裂过程的区别是减数分裂产生的子细胞是有性生殖细胞,而有丝分裂产生体细胞;减数分裂细胞连续分裂2次,而染色体复制1次,有联会、四分体和同源染色体的分离现象;有丝分裂染色体复制和细胞分裂均为1次,无联会和同源染色体分离等现象。
拓展:
①由于减数分裂过程存在联会、同源染色体分离,所以导致分裂后子细胞染色体数量减半,所以减数分裂后,染色体数目比原来减少了一半。
②同源染色体一般能够在减数分裂中发生联会(即配对)现象,形状大小一般相同。
③四分体是指联会后的一对同源染色体共有四条染色单体,成为一个四分体。四分体、同源染色体、染色单体、核 DNA之间的数量关系是1个四分体含有1对同源染色体,共含有4条染色单体,4条DNA。
④在有丝分裂过程中不能形成四分体,因为不发生同源染色体的联会现象。
⑤遗传规律的发生是在细胞减数分裂减I 后期,即同源染色体分离和非同源染色体自由组合的时期。
2.配子的形成过程
(2)卵细胞与精子形成过程的主要区别:卵细胞形成过程中细胞质不均等分配、减数分裂后不经过细胞变形过程,而 精子的形成细胞质均等分配、减数分裂后形成精子时有细胞变形过程。
3.受精过程
(3)受精作用是指精子和卵细胞融合形成受精卵的过程,受精作用的实质是精核与卵细胞核的融合。
(4)受精卵中的核遗传物质一半来自方,一半来自母方,但是如果不强调是核中的遗传物质,就不能说各占一半,因为细胞质遗传物质几乎全部来自卵细胞。
(5)减数分裂和受精作用的重要意义是保证了有性生殖过程中染色体一半来自父方,一半来自母方,并且保证了亲子代染色体数目的恒定。
二、遗传的分子基础
1.人类对遗传物质的探索过程
(1)格里菲思的肺炎双球菌实验过程:该实验共分四组,分别由R型、S型、加热杀死的S型细菌感染小鼠,最后由加热杀死的S型细菌和R型细菌混合感染小鼠,观察小鼠的死活,并试图从死亡的小鼠体内提取S型细菌。
实验结果:将R型、加热杀死的S型细菌感染小鼠,小鼠均不死亡;S型、加热杀死的S型细菌和R型细菌混合感染小鼠,小鼠死亡,并且从死亡小鼠体内提取出S型细菌。
(2)格里菲思的肺炎双球菌实验结论:加热杀死的S型细菌的转化因子使R型细菌发生了转化,从而使小鼠死亡。
(3)艾弗里证明遗传物质是DNA的实验过程:让R型细菌分别与S型细菌的DNA.蛋白质、多糖等物质分别混合,并分别在固体培养基上培养,观察哪组能产生S型细菌表面光滑的菌落特征。实验结果:只有与S型细菌的DNA混合的R型细菌接种后能产生S型细菌的菌落特征。
(4)艾弗里和他的同事通过上述实验得出的结论:使R型细菌转化为S型细菌的转化因子即遗传物质是DNA。
(5)赫尔希和蔡斯(T2噬菌体侵染细菌)的实验操作步骤:首先让T2 噬菌体分别标记32P、35S,然后分别与大肠杆菌混合培养,一段时间后振荡、离心,之后观察放射性在试管的上清液还是沉淀中。
实验结果:标记32P的组放射性主要在沉淀中,而标记5S的组放射性集中在上清液中。
拓展:
①T2 噬菌体侵染细菌后,合成自身组分所需的物质和原料均从细菌中来。
②获得含5S 和32P标记的 T2 噬菌体的方法是首先在含有放射性物质的培养基中培养大肠杆菌,之后再接种T2噬菌体,连续多代培养从而获得含有放射性的噬菌体。
③在噬菌体侵染细菌的实验中,证明DNA是遗传物质的最关键的实验设计思路是将噬菌体的DNA 和蛋白质分离,分别考察对子代噬菌体的影响作用。
④这个实验过程不能证明 DNA 是主要的遗传物质,由于其他生物有的遗传物质是RNA,而此实验不能进一步证明。
⑤这个实验不能证明蛋白质是遗传物质,因为蛋白质在形成子代噬菌体的过程中不能发挥遗传物质的作用。
2.DNA分子结构的主要特点
(6)DNA分子的基本单位是脱氧核苷酸;RNA分子的基本单位是核糖核苷酸。
(7)DNA 分子的空间结构特点是:首先,DNA 由两条脱氧核苷酸链反向平行构成;其次,DNA分子的外侧由磷酸和脱氧核糖交替连接构成基本骨架,碱基在内侧;碱基之间通过氢键以碱基互补配对方式连接。
拓展:
①判断核酸的种类有三种方法,具有符合双螺旋结构的是DNA,否则可能是RNA;组成如果含有核糖为RNA,如果含有脱氧核糖,则是DNA;组成该分子的碱基中,含有胸腺嘧啶的是DNA,含有尿嘧啶而不含胸腺嘧啶的是RNA。②根据结构功能的统一性原理,地处炎热地区的生物,其DNA分子的结构应更需要维持稳定性,防止热变性,所以具有 G、C 碱基含量高、氢键多,
3.DNA 分子的复制
(8)简述DNA分子复制的过程:DNA分子在解旋酶作用下解旋,之后以细胞核中游离的脱氧核苷酸为原料、以碱基互补配对为原则、合成子代DNA,之后重新螺旋化。
拓展:
①DNA的复制主要在在细胞分裂的间期进行。
②DNA复制是以亲代 DNA 分子的两条脱氧核苷酸链分别作为模板。
③DNA复制的原料是细胞核里游离的脱氧核苷酸。
④DNA复制的方式是半保留复制和边解旋边复制。
⑤DNA复制的场所主要是细胞核,线粒体和叶绿体中也有。
⑥DNA复制需要的基本条件是模板、原料、能量、酶。
4.基因的概念与表达
(9)基因是有遗传效应的 DNA 片段,是 DNA 分子中决定生物性状的结构和功能单位。基因与脱氧核苷酸、遗传信息、DNA.染色体、蛋白质、生物性状之间的关系是:基因是DNA 分子中决定生物性状的基本单位,染色体由 DNA 和蛋白质组成,遗传信息是由基因中特定的脱氧核苷酸的排列顺序决定的。
(10)遗传信息的转录和翻译
①基因控制蛋白质的合成包括两个阶段是转录和翻译。
②转录是在细胞核中以 DNA 为模板,按碱基互补配对方式合成 RNA 的过程。
拓展:
①转录发生的时间是细胞分裂间期。
②转录的模板是 “DNA 分子的一条脱氧核苷酸链”
③转录的原料是细胞核里游离的核糖核苷酸。
④转录的产物是 RNA 分子。
⑤转录需要的基本条件是模板、原料、能量、酶等。
(11)翻译是在核糖体中以 mRNA 为模板,按照碱基互补配对原则,以 tRNA 为转运工具、以细胞质里游离的氨基酸为原料合成蛋白质的过程。
①翻译发生的场所是核糖体。
②准确地说,翻译的产物是多肽链。
③翻译需要的原料是细胞质里游离的氨基酸。
拓展:
①原核生物与真核生物的基因表达不同:原核细胞的转录和翻译可同时进行;真核细胞的转录在细胞核中进行,mRNA经加工成熟后通过核孔进入细胞质,在细胞质核糖体进行翻译。
②病毒基因的表达所需原料来自宿主细胞的游离核糖核苷酸和氨基酸,模板来自病毒基因转录来的 mRNA。
③遗传信息是指 DNA 分子上基因的碱基排列顺序;密码子指 mRNA 中决定一个氨基酸的三个连续碱基;反密码子是指 tRNA 分子中与 mRNA 分子密码子配对的三个连续碱基,反密码子与密码子互补。起始密码子、终止密码子均存在于 mRNA 分子上。
(12)一种tRNA只能运转一种特定的氨基酸。一种氨基酸可由多种tRNA 转运。
(13)在基因表达过程中 DNA 分子中碱基数、mRNA 分子中碱基数、氨基酸数的数量关系是 6:3:1。
五、遗传的分离定律
1.孟德尔遗传实验的科学方法
(1)遗传学实验的科学杂交实验包括:人工去雄、套袋、授粉、套袋。
(2)孟德尔获得成功的原因:首先选择了相对性状明显和严格自花传粉的植物进行杂交,其次运用了科学的统计学分析方法和以严谨的科学态度进行研究。
2.基因分离定律和自由组合定律
(3)分离定律的内容是在杂合体进行自交形成配子时,等位基因随着一对同源染色体的分离而彼此分开,分别进入不同的配子中。
(4)分离定律的实质是等位基因彼此分离。
(5)分离定律在杂交育种方面的应用是:选育出显性性状的个体后需要进行不断的自交,以获得纯合子;选育隐性性状的个体时无需连续自交即可获得所需的纯合子。
拓展:
①判断性状的显隐性关系:两表现不同的亲本杂交子代表现的性状为显性性状;或亲本杂交出现 3:1 时,比例高者为显性性状。
②一个生物是纯合子还是杂合子?可以从亲本自交是否出现性状分离来判断,出现分离则为杂合子。
六、遗传的自由组合定律
1.基因的自由组合定律内容
(1)基因自由组合定律的实质是等位基因彼此分离的同时非同源染色体上的非等位基因自由组合;发生的时间为减数分裂形成配子时。
拓展:验证基因的分离定律和自由组合定律是通过测交实验,若测交实验出现 1:1,则证明符合分离定律;如出现 1:1:1:1 则符合基因的自由组合定律。(验证决定两对相对性状的基因是否位于一对同源染色体上可通过杂合子自交,如符合 9:3:3:1 及其变式比,则两对基因位于两对同源染色体上,如不符合 9:3:3:1,则两对基因位于一对同源染色体上。)
(2)熟练记住杂交组合后代的基因型、表现型的种类和比例,并能熟练应用。
2.基因与性状的关系
(3)基因控制生物性状的两种方式:一是通过控制酶的合成来控制代谢过程,进而控制生物体的性状;而是通过控制蛋白质的结构直接控制生物体的性状。
七、伴性遗传
1.伴性遗传是指性染色体上的基因遗传方式与性别相联系称为伴性遗传。
2.伴 X 染色体显、隐性遗传病的特点是所生后代男女发病率不同,前者女性发病率高于男性,后者男性发病率高于女性。常染色体上的显、隐性遗传的特点是后代男女发病率相同,前者常常代代有患者,后者往往出现隔代遗传。
3.判断控制生物性状的基因:在常染色体还是在X 染色体上主要是看子代男女发病率是否相同,前者所生子代男女发病率相同,后者不同。
八、人类遗传病
1.人类遗传病的类型主要有:单基因遗传病、多基因遗传病、染色体病等。
2.人类遗传病的监测和预防:略。
3.人类基因组计划测定的是24条染色体上的基因,即22条常染色体和X、Y两条性染色体,因为X、Y染色体具有不相同的基因和碱基顺序。